I dunno how many times I'm gonna have to fix the "problem seems to be the hex conversion" bug, but this is at least the fourth try.
<?php/** * Phijndael - an implementation of the AES encryption standard in PHP * Originally written by Fritz Schneider <fritz AT cd DOT ucsd DOT edu> * Ported to PHP by Dan Fuhry <dan AT enano DOT homelinux DOT org> * @package phijndael * @author Fritz Schneider * @author Dan Fuhry * @license BSD-style license */error_reporting(E_ALL);define ('ENC_HEX', 201);define ('ENC_BASE64', 202);define ('ENC_BINARY', 203);class AESCrypt { var $debug = false; var $mcrypt = false; // Rijndael parameters -- Valid values are 128, 192, or 256 var $keySizeInBits = 128; var $blockSizeInBits = 128; /////// You shouldn't have to modify anything below this line except for /////// the function getRandomBytes(). // // Note: in the following code the two dimensional arrays are indexed as // you would probably expect, as array[row][column]. The state arrays // are 2d arrays of the form state[4][Nb]. // The number of rounds for the cipher, indexed by [Nk][Nb] var $roundsArray = Array(0,0,0,0,Array(0,0,0,0,10,0, 12,0, 14),0, Array(0,0,0,0,12,0, 12,0, 14),0, Array(0,0,0,0,14,0, 14,0, 14) ); // The number of bytes to shift by in shiftRow, indexed by [Nb][row] var $shiftOffsets = Array(0,0,0,0,Array(0,1, 2, 3),0,Array(0,1, 2, 3),0,Array(0,1, 3, 4) ); // The round constants used in subkey expansion var $Rcon = Array( 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ); // Precomputed lookup table for the SBox var $SBox = Array( 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22 ); // Precomputed lookup table for the inverse SBox var $SBoxInverse = Array( 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125 ); function AESCrypt($ks = 128, $bs = 128, $debug = false) { $this->__construct($ks, $bs, $debug); } function __construct($ks = 128, $bs = 128, $debug = false) { $this->keySizeInBits = $ks; $this->blockSizeInBits = $bs; // Use the Mcrypt library? This speeds things up dramatically. if(defined('MCRYPT_RIJNDAEL_' . $ks) && defined('MCRYPT_ACCEL')) { eval('$mcb = MCRYPT_RIJNDAEL_' . $ks.';'); $bks = mcrypt_module_get_algo_block_size($mcb); $bks = $bks * 8; if ( $bks != $bs ) { $mcb = false; echo (string)$bks; } } else { $mcb = false; } $this->mcrypt = $mcb; // Cipher parameters ... do not change these $this->Nk = $this->keySizeInBits / 32; $this->Nb = $this->blockSizeInBits / 32; $this->Nr = $this->roundsArray[$this->Nk][$this->Nb]; $this->debug = $debug; } // Error handler function trigger_error($text, $level = E_USER_NOTICE) { $bt = debug_backtrace(); $lastfunc =& $bt[1]; switch($level) { case E_USER_NOTICE: default: $desc = 'Notice'; break; case E_USER_WARNING: $desc = 'Warning'; break; case E_USER_ERROR: $desc = 'Fatal'; break; } ob_start(); if($this->debug || $level == E_USER_ERROR) echo "AES encryption: <b>{$desc}:</b> $text in {$lastfunc['file']} on line {$lastfunc['line']} in function {$lastfunc['function']}<br />"; if($this->debug) { //echo '<pre>'.enano_debug_print_backtrace(true).'</pre>'; } ob_end_flush(); if($level == E_USER_ERROR) { echo '<p><b>This can sometimes happen if you are upgrading Enano to a new version and did not log out first.</b> <a href="'.$_SERVER['PHP_SELF'].'?do=diag&sub=cookie_destroy">Click here</a> to force cookies to clear and try again. You will be logged out.</p>'; exit; } } function array_slice_js_compat($array, $start, $finish = 0) { $len = $finish - $start; if($len < 0) $len = 0 - $len; //if($this->debug) echo (string)$len . ' '; //if(count($array) < $start + $len) // $this->trigger_error('Index out of range', E_USER_WARNING); return array_slice($array, $start, $len); } function concat($s1, $s2) { if(is_array($s1) && is_array($s2)) return array_merge($s1, $s2); elseif( ( is_array($s1) && !is_array($s2) ) || ( !is_array($s1) && is_array($s2) ) ) { $this->trigger_error('incompatible types - you can\'t combine a non-array with an array', E_USER_WARNING); return false; } else return $s1 . $s2; } // This method circularly shifts the array left by the number of elements // given in its parameter. It returns the resulting array and is used for // the ShiftRow step. Note that shift() and push() could be used for a more // elegant solution, but they require IE5.5+, so I chose to do it manually. function cyclicShiftLeft($theArray, $positions) { if(!is_int($positions)) { $this->trigger_error('$positions is not an integer! Backtrace:<br /><pre>'.print_r(debug_backtrace(), true).'</pre>', E_USER_WARNING); return false; } $second = array_slice($theArray, 0, $positions); $first = array_slice($theArray, $positions); $theArray = array_merge($first, $second); return $theArray; } // Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec. function xtime($poly) { $poly <<= 1; return (($poly & 0x100) ? ($poly ^ 0x11B) : ($poly)); } // Multiplies the two elements of GF(2^8) together and returns the result. // See the Rijndael spec, but should be straightforward: for each power of // the indeterminant that has a 1 coefficient in x, add y times that power // to the result. x and y should be bytes representing elements of GF(2^8) function mult_GF256($x, $y) { $result = 0; for ($bit = 1; $bit < 256; $bit *= 2, $y = $this->xtime($y)) { if ($x & $bit) $result ^= $y; } return $result; } // Performs the substitution step of the cipher. State is the 2d array of // state information (see spec) and direction is string indicating whether // we are performing the forward substitution ("encrypt") or inverse // substitution (anything else) function byteSub(&$state, $direction) { //global $this->SBox, $this->SBoxInverse, $this->Nb; if ($direction == "encrypt") // Point S to the SBox we're using $S =& $this->SBox; else $S =& $this->SBoxInverse; for ($i = 0; $i < 4; $i++) // Substitute for every byte in state for ($j = 0; $j < $this->Nb; $j++) $state[$i][$j] = $S[$state[$i][$j]]; } // Performs the row shifting step of the cipher. function shiftRow(&$state, $direction) { //global $this->Nb, $this->shiftOffsets; for ($i=1; $i<4; $i++) // Row 0 never shifts if ($direction == "encrypt") $state[$i] = $this->cyclicShiftLeft($state[$i], $this->shiftOffsets[$this->Nb][$i]); else $state[$i] = $this->cyclicShiftLeft($state[$i], $this->Nb - $this->shiftOffsets[$this->Nb][$i]); } // Performs the column mixing step of the cipher. Most of these steps can // be combined into table lookups on 32bit values (at least for encryption) // to greatly increase the speed. function mixColumn(&$state, $direction) { //global $this->Nb; $b = Array(); // Result of matrix multiplications for ($j = 0; $j < $this->Nb; $j++) { // Go through each column... for ($i = 0; $i < 4; $i++) { // and for each row in the column... if ($direction == "encrypt") $b[$i] = $this->mult_GF256($state[$i][$j], 2) ^ // perform mixing $this->mult_GF256($state[($i+1)%4][$j], 3) ^ $state[($i+2)%4][$j] ^ $state[($i+3)%4][$j]; else $b[$i] = $this->mult_GF256($state[$i][$j], 0xE) ^ $this->mult_GF256($state[($i+1)%4][$j], 0xB) ^ $this->mult_GF256($state[($i+2)%4][$j], 0xD) ^ $this->mult_GF256($state[($i+3)%4][$j], 9); } for ($i = 0; $i < 4; $i++) // Place result back into column $state[$i][$j] = $b[$i]; } } // Adds the current round key to the state information. Straightforward. function addRoundKey(&$state, $roundKey) { //global $this->Nb; for ($j = 0; $j < $this->Nb; $j++) { // Step through columns... $state[0][$j] ^= ( $roundKey[$j] & 0xFF); // and XOR $state[1][$j] ^= (($roundKey[$j]>>8) & 0xFF); $state[2][$j] ^= (($roundKey[$j]>>16) & 0xFF); $state[3][$j] ^= (($roundKey[$j]>>24) & 0xFF); } } // This function creates the expanded key from the input (128/192/256-bit) // key. The parameter key is an array of bytes holding the value of the key. // The returned value is an array whose elements are the 32-bit words that // make up the expanded key. function keyExpansion($key) { //global $this->keySizeInBits, $this->blockSizeInBits, $this->roundsArray, $this->Nk, $this->Nb, $this->Nr, $this->Nk, $this->SBox, $this->Rcon; $expandedKey = Array(); // in case the key size or parameters were changed... $this->Nk = $this->keySizeInBits / 32; $this->Nb = $this->blockSizeInBits / 32; $this->Nr = $this->roundsArray[$this->Nk][$this->Nb]; for ($j=0; $j < $this->Nk; $j++) // Fill in input key first $expandedKey[$j] = ($key[4*$j]) | ($key[4*$j+1]<<8) | ($key[4*$j+2]<<16) | ($key[4*$j+3]<<24); // Now walk down the rest of the array filling in expanded key bytes as // per Rijndael's spec for ($j = $this->Nk; $j < $this->Nb * ($this->Nr + 1); $j++) { // For each word of expanded key $temp = $expandedKey[$j - 1]; if ($j % $this->Nk == 0) $temp = ( ($this->SBox[($temp>>8) & 0xFF]) | ($this->SBox[($temp>>16) & 0xFF]<<8) | ($this->SBox[($temp>>24) & 0xFF]<<16) | ($this->SBox[$temp & 0xFF]<<24) ) ^ $this->Rcon[floor($j / $this->Nk) - 1]; elseif ($this->Nk > 6 && $j % $this->Nk == 4) $temp = ($this->SBox[($temp>>24) & 0xFF]<<24) | ($this->SBox[($temp>>16) & 0xFF]<<16) | ($this->SBox[($temp>>8) & 0xFF]<<8) | ($this->SBox[ $temp & 0xFF]); $expandedKey[$j] = $expandedKey[$j-$this->Nk] ^ $temp; } return $expandedKey; } // Rijndael's round functions... function RijndaelRound(&$state, $roundKey) { $this->byteSub($state, "encrypt"); $this->shiftRow($state, "encrypt"); $this->mixColumn($state, "encrypt"); $this->addRoundKey($state, $roundKey); } function InverseRijndaelRound(&$state, $roundKey) { $this->addRoundKey($state, $roundKey); $this->mixColumn($state, "decrypt"); $this->shiftRow($state, "decrypt"); $this->byteSub($state, "decrypt"); } function FinalRijndaelRound(&$state, $roundKey) { $this->byteSub($state, "encrypt"); $this->shiftRow($state, "encrypt"); $this->addRoundKey($state, $roundKey); } function InverseFinalRijndaelRound(&$state, $roundKey){ $this->addRoundKey($state, $roundKey); $this->shiftRow($state, "decrypt"); $this->byteSub($state, "decrypt"); } // encrypt is the basic encryption function. It takes parameters // block, an array of bytes representing a plaintext block, and expandedKey, // an array of words representing the expanded key previously returned by // keyExpansion(). The ciphertext block is returned as an array of bytes. function cryptBlock($block, $expandedKey) { //global $this->blockSizeInBits, $this->Nb, $this->Nr; $t=count($block)*8; if (!is_array($block) || count($block)*8 != $this->blockSizeInBits) { $this->trigger_error('block is bad or block size is wrong<pre>'.print_r($block, true).'</pre><p>Aiming for size '.$this->blockSizeInBits.', got '.$t.'.', E_USER_WARNING); return false; } if (!$expandedKey) return; $block = $this->packBytes($block); $this->addRoundKey($block, $expandedKey); for ($i=1; $i<$this->Nr; $i++) $this->RijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1))); $this->FinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr)); $ret = $this->unpackBytes($block); return $ret; } // decrypt is the basic decryption function. It takes parameters // block, an array of bytes representing a ciphertext block, and expandedKey, // an array of words representing the expanded key previously returned by // keyExpansion(). The decrypted block is returned as an array of bytes. function unCryptBlock($block, $expandedKey) { $t = count($block)*8; if (!is_array($block) || count($block)*8 != $this->blockSizeInBits) { $this->trigger_error('$block is not a valid rijndael-block array: '.$this->byteArrayToHex($block).'<pre>'.print_r($block, true).'</pre><p>Block size is '.$t.', should be '.$this->blockSizeInBits.'</p>', E_USER_WARNING); return false; } if (!$expandedKey) { $this->trigger_error('$expandedKey is invalid', E_USER_WARNING); return false; } $block = $this->packBytes($block); $this->InverseFinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr)); for ($i = $this->Nr - 1; $i>0; $i--) { $this->InverseRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1))); } $this->addRoundKey($block, $expandedKey); $ret = $this->unpackBytes($block); if(!is_array($ret)) { $this->trigger_error('$ret is not an array', E_USER_WARNING); } return $ret; } // This method takes a byte array (byteArray) and converts it to a string by // applying String.fromCharCode() to each value and concatenating the result. // The resulting string is returned. Note that this function SKIPS zero bytes // under the assumption that they are padding added in formatPlaintext(). // Obviously, do not invoke this method on raw data that can contain zero // bytes. It is really only appropriate for printable ASCII/Latin-1 // values. Roll your own function for more robust functionality :) function byteArrayToString($byteArray) { $result = ""; for($i=0; $i<count($byteArray); $i++) if ($byteArray[$i] != 0) $result .= chr($byteArray[$i]); return $result; } // This function takes an array of bytes (byteArray) and converts them // to a hexadecimal string. Array element 0 is found at the beginning of // the resulting string, high nibble first. Consecutive elements follow // similarly, for example [16, 255] --> "10ff". The function returns a // string. /* function byteArrayToHex($byteArray) { $result = ""; if (!$byteArray) return; for ($i=0; $i<count($byteArray); $i++) $result .= (($byteArray[$i]<16) ? "0" : "") + toString($byteArray[$i]); // magic number here is 16, not sure how to handle this... return $result; } */ function byteArrayToHex($arr) { $ret = ''; foreach($arr as $a) { $nibble = (string)dechex(intval($a)); if(strlen($nibble) == 1) $nibble = '0' . $nibble; $ret .= $nibble; } return $ret; } // PHP equivalent of Javascript's toString() function toString($bool) { if(is_bool($bool)) return ($bool) ? 'true' : 'false'; elseif(is_array($bool)) return implode(',', $bool); else return (string)$bool; } // This function converts a string containing hexadecimal digits to an // array of bytes. The resulting byte array is filled in the order the // values occur in the string, for example "10FF" --> [16, 255]. This // function returns an array. /* function hexToByteArray($hexString) { $byteArray = Array(); if (strlen($hexString) % 2) // must have even length return; if (strstr($hexString, "0x") == $hexString || strstr($hexString, "0X") == $hexString) $hexString = substr($hexString, 2); for ($i = 0; $i<strlen($hexString); $i++,$i++) $byteArray[floor($i/2)] = intval(substr($hexString, $i, 2)); // again, that strange magic number: 16 return $byteArray; } */ function hexToByteArray($str) { if(substr($str, 0, 2) == '0x' || substr($str, 0, 2) == '0X') $str = substr($str, 2); $arr = Array(); $str = $this->enano_str_split($str, 2); foreach($str as $s) { $arr[] = intval(hexdec($s)); } return $arr; } // This function packs an array of bytes into the four row form defined by // Rijndael. It assumes the length of the array of bytes is divisible by // four. Bytes are filled in according to the Rijndael spec (starting with // column 0, row 0 to 3). This function returns a 2d array. function packBytes($octets) { $state = Array(); if (!$octets || count($octets) % 4) return; $state[0] = Array(); $state[1] = Array(); $state[2] = Array(); $state[3] = Array(); for ($j=0; $j<count($octets); $j = $j+4) { $state[0][$j/4] = $octets[$j]; $state[1][$j/4] = $octets[$j+1]; $state[2][$j/4] = $octets[$j+2]; $state[3][$j/4] = $octets[$j+3]; } return $state; } // This function unpacks an array of bytes from the four row format preferred // by Rijndael into a single 1d array of bytes. It assumes the input "packed" // is a packed array. Bytes are filled in according to the Rijndael spec. // This function returns a 1d array of bytes. function unpackBytes($packed) { $result = Array(); for ($j=0; $j<count($packed[0]); $j++) { $result[] = $packed[0][$j]; $result[] = $packed[1][$j]; $result[] = $packed[2][$j]; $result[] = $packed[3][$j]; } return $result; } function charCodeAt($str, $i) { return ord(substr($str, $i, 1)); } function fromCharCode($str) { return chr($str); } // This function takes a prospective plaintext (string or array of bytes) // and pads it with zero bytes if its length is not a multiple of the block // size. If plaintext is a string, it is converted to an array of bytes // in the process. The type checking can be made much nicer using the // instanceof operator, but this operator is not available until IE5.0 so I // chose to use the heuristic below. function formatPlaintext($plaintext) { //global $this->blockSizeInBits; $bpb = $this->blockSizeInBits / 8; // bytes per block // if primitive string or String instance if (is_string($plaintext)) { $plaintext = $this->enano_str_split($plaintext); // Unicode issues here (ignoring high byte) for ($i=0; $i<sizeof($plaintext); $i++) $plaintext[$i] = $this->charCodeAt($plaintext[$i], 0) & 0xFF; } for ($i = $bpb - (sizeof($plaintext) % $bpb); $i > 0 && $i < $bpb; $i--) $plaintext[] = 0; return $plaintext; } // Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS // TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL" // APPLICATION. (edit: done, mt_rand() is relatively secure) function getRandomBytes($howMany) { $bytes = Array(); for ($i=0; $i<$howMany; $i++) $bytes[$i] = mt_rand(0, 255); return $bytes; } // rijndaelEncrypt(plaintext, key, mode) // Encrypts the plaintext using the given key and in the given mode. // The parameter "plaintext" can either be a string or an array of bytes. // The parameter "key" must be an array of key bytes. If you have a hex // string representing the key, invoke hexToByteArray() on it to convert it // to an array of bytes. The third parameter "mode" is a string indicating // the encryption mode to use, either "ECB" or "CBC". If the parameter is // omitted, ECB is assumed. // // An array of bytes representing the cihpertext is returned. To convert // this array to hex, invoke byteArrayToHex() on it. If you are using this // "for real" it is a good idea to change the function getRandomBytes() to // something that returns truly random bits. function rijndaelEncrypt($plaintext, $key, $mode = 'ECB') { //global $this->blockSizeInBits, $this->keySizeInBits; $bpb = $this->blockSizeInBits / 8; // bytes per block // var ct; // ciphertext if($mode == 'CBC') { if (!is_string($plaintext) || !is_array($key)) { $this->trigger_error('In CBC mode the first and second parameters should be strings', E_USER_WARNING); return false; } } else { if (!is_array($plaintext) || !is_array($key)) { $this->trigger_error('In ECB mode the first and second parameters should be byte arrays', E_USER_WARNING); return false; } } if (sizeof($key)*8 != $this->keySizeInBits) { $this->trigger_error('The key needs to be '. ( $this->keySizeInBits / 8 ) .' bytes in length', E_USER_WARNING); return false; } if ($mode == "CBC") $ct = $this->getRandomBytes($bpb); // get IV else { $mode = "ECB"; $ct = Array(); } // convert plaintext to byte array and pad with zeros if necessary. $plaintext = $this->formatPlaintext($plaintext); $expandedKey = $this->keyExpansion($key); for ($block=0; $block<sizeof($plaintext) / $bpb; $block++) { $aBlock = $this->array_slice_js_compat($plaintext, $block*$bpb, ($block+1)*$bpb); if ($mode == "CBC") { for ($i=0; $i<$bpb; $i++) { $aBlock[$i] ^= $ct[$block*$bpb + $i]; } } $cp = $this->cryptBlock($aBlock, $expandedKey); $ct = $this->concat($ct, $cp); } return $ct; } // rijndaelDecrypt(ciphertext, key, mode) // Decrypts the using the given key and mode. The parameter "ciphertext" // must be an array of bytes. The parameter "key" must be an array of key // bytes. If you have a hex string representing the ciphertext or key, // invoke hexToByteArray() on it to convert it to an array of bytes. The // parameter "mode" is a string, either "CBC" or "ECB". // // An array of bytes representing the plaintext is returned. To convert // this array to a hex string, invoke byteArrayToHex() on it. To convert it // to a string of characters, you can use byteArrayToString(). function rijndaelDecrypt($ciphertext, $key, $mode = 'ECB') { //global $this->blockSizeInBits, $this->keySizeInBits; $bpb = $this->blockSizeInBits / 8; // bytes per block $pt = Array(); // plaintext array // $aBlock; // a decrypted block // $block; // current block number if (!$ciphertext) { $this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING); return false; } if( !is_array($key) ) { $this->trigger_error('$key should be a byte array', E_USER_WARNING); return false; } if( is_string($ciphertext) ) { $this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING); return false; } if (sizeof($key)*8 != $this->keySizeInBits) { $this->trigger_error('Encryption key is the wrong length', E_USER_WARNING); return false; } if (!$mode) $mode = "ECB"; // assume ECB if mode omitted $expandedKey = $this->keyExpansion($key); // work backwards to accomodate CBC mode for ($block=(sizeof($ciphertext) / $bpb)-1; $block>0; $block--) { if( ( $block*$bpb ) + ( ($block+1)*$bpb ) > count($ciphertext) ) { //$this->trigger_error('$ciphertext index out of bounds', E_USER_ERROR); } $current_block = $this->array_slice_js_compat($ciphertext, $block*$bpb, ($block+1)*$bpb); if(count($current_block) * 8 != $this->blockSizeInBits) { // $c=count($current_block)*8; // $this->trigger_error('We got a '.$c.'-bit block, instead of '.$this->blockSizeInBits.'', E_USER_ERROR); } $aBlock = $this->uncryptBlock($current_block, $expandedKey); if(!$aBlock) { $this->trigger_error('Shared block decryption routine returned false', E_USER_WARNING); return false; } if ($mode == "CBC") for ($i=0; $i<$bpb; $i++) $pt[($block-1)*$bpb + $i] = $aBlock[$i] ^ $ciphertext[($block-1)*$bpb + $i]; else $pt = $this->concat($aBlock, $pt); } // do last block if ECB (skips the IV in CBC) if ($mode == "ECB") { $x = $this->uncryptBlock($this->array_slice_js_compat($ciphertext, 0, $bpb), $expandedKey); if(!$x) { $this->trigger_error('ECB block decryption routine returned false', E_USER_WARNING); return false; } $pt = $this->concat($x, $pt); if(!$pt) { $this->trigger_error('ECB concatenation routine returned false', E_USER_WARNING); return false; } } return $pt; } /** * Wrapper for encryption. * @param string $text the text to encrypt * @param string $key the raw binary key to encrypt with * @param int $return_encoding optional - can be ENC_BINARY, ENC_HEX or ENC_BASE64 */ function encrypt($text, $key, $return_encoding = ENC_HEX) { if ( $this->mcrypt && $this->blockSizeInBits == mcrypt_module_get_algo_block_size(eval('return MCRYPT_RIJNDAEL_'.$this->keySizeInBits.';')) ) { $iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB); $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND); $cryptext = mcrypt_encrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv); switch($return_encoding) { case ENC_HEX: default: $cryptext = $this->strtohex($cryptext); break; case ENC_BINARY: $cryptext = $cryptext; break; case ENC_BASE64: $cryptext = base64_encode($cryptext); break; } } else { $key = $this->prepare_string($key); $text = $this->prepare_string($text); $cryptext = $this->rijndaelEncrypt($text, $key, 'ECB'); if(!is_array($cryptext)) { echo 'Warning: encryption failed for string: '.print_r($text,true).'<br />'; return false; } switch($return_encoding) { case ENC_HEX: default: $cryptext = $this->byteArrayToHex($cryptext); break; case ENC_BINARY: $cryptext = $this->byteArrayToString($cryptext); break; case ENC_BASE64: $cryptext = base64_encode($this->byteArrayToString($cryptext)); break; } } return $cryptext; } /** * Wrapper for decryption. * @param string $text the encrypted text * @param string $key the raw binary key used to encrypt the text * @param int $input_encoding the encoding used for the encrypted string. Can be ENC_BINARY, ENC_HEX, or ENC_BASE64. * @return string */ function decrypt($text, $key, $input_encoding = ENC_HEX) { switch($input_encoding) { case ENC_BINARY: default: break; case ENC_HEX: $text = $this->hextostring($text); break; case ENC_BASE64: $text = base64_decode($text); break; } //$mod = strlen($text) % $this->blockSizeInBits; //if($mod != 96) //die('modulus check failed: '.$mod); if ( $this->mcrypt ) { $iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB); $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND); $dypt = mcrypt_decrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv); } else { $etext = $this->prepare_string($text); $ekey = $this->prepare_string($key); $mod = count($etext) % $this->blockSizeInBits; $dypt = $this->rijndaelDecrypt($etext, $ekey, 'ECB'); if(!$dypt) { echo '<pre>'.print_r($dypt, true).'</pre>'; $this->trigger_error('Rijndael main decryption routine failed', E_USER_ERROR); } $dypt = $this->byteArrayToString($dypt); } return $dypt; } /** * Enano-ese equivalent of str_split() which is only found in PHP5 * @param $text string the text to split * @param $inc int size of each block * @return array */ function enano_str_split($text, $inc = 1) { if($inc < 1) return false; if($inc >= strlen($text)) return Array($text); $len = ceil(strlen($text) / $inc); $ret = Array(); for($i=0;$i<strlen($text);$i=$i+$inc) { $ret[] = substr($text, $i, $inc); } return $ret; } /** * Generates a random key suitable for encryption * @param int $len the length of the key, in bytes * @return string a BINARY key */ function randkey($len = 32) { $key = ''; for($i=0;$i<$len;$i++) { $key .= chr(mt_rand(0, 255)); } return $key; } /* function byteArrayToString($arr) { if(!is_array($arr)) { $this->trigger_error('First parameter should be an array', E_USER_WARNING); return false; } $ret = ''; foreach($arr as $a) { if($a != 0) $ret .= chr($a); } return $ret; } */ function strtohex($str) { $str = $this->enano_str_split($str); $ret = ''; foreach($str as $s) { $chr = dechex(ord($s)); if(strlen($chr) < 2) $chr = '0' . $chr; $ret .= $chr; } return $ret; } function gen_readymade_key() { $key = $this->strtohex($this->randkey($this->keySizeInBits / 8)); return $key; } function prepare_string($text) { $ret = $this->hexToByteArray($this->strtohex($text)); if(count($ret) != strlen($text)) { die('Could not convert string "' . $text . '" to hex byte array for encryption'); } return $ret; } /** * Decodes a hex string. * @param string $hex The hex code to decode * @return string */ function hextostring($hex) { $hex = $this->enano_str_split($hex, 2); $bin_key = ''; foreach($hex as $nibble) { $byte = chr(hexdec($nibble)); $bin_key .= $byte; } return $bin_key; }}/** * XXTEA encryption arithmetic library. * * Copyright (C) 2006 Ma Bingyao <andot@ujn.edu.cn> * Version: 1.5 * LastModified: Dec 5, 2006 * This library is free. You can redistribute it and/or modify it. * * From dandaman32: I am treating this code as GPL, as implied by the license statement above. */class TEACrypt extends AESCrypt { function long2str($v, $w) { $len = count($v); $n = ($len - 1) << 2; if ($w) { $m = $v[$len - 1]; if (($m < $n - 3) || ($m > $n)) return false; $n = $m; } $s = array(); for ($i = 0; $i < $len; $i++) { $s[$i] = pack("V", $v[$i]); } if ($w) { return substr(join('', $s), 0, $n); } else { return join('', $s); } } function str2long($s, $w) { $v = unpack("V*", $s. str_repeat("\0", (4 - strlen($s) % 4) & 3)); $v = array_values($v); if ($w) { $v[count($v)] = strlen($s); } return $v; } function int32($n) { while ($n >= 2147483648) $n -= 4294967296; while ($n <= -2147483649) $n += 4294967296; return (int)$n; } function encrypt($str, $key) { if ($str == "") { return ""; } $v = $this->str2long($str, true); $k = $this->str2long($key, false); if (count($k) < 4) { for ($i = count($k); $i < 4; $i++) { $k[$i] = 0; } } $n = count($v) - 1; $z = $v[$n]; $y = $v[0]; $delta = 0x9E3779B9; $q = floor(6 + 52 / ($n + 1)); $sum = 0; while (0 < $q--) { $sum = $this->int32($sum + $delta); $e = $sum >> 2 & 3; for ($p = 0; $p < $n; $p++) { $y = $v[$p + 1]; $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); $z = $v[$p] = $this->int32($v[$p] + $mx); } $y = $v[0]; $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); $z = $v[$n] = $this->int32($v[$n] + $mx); } return $this->long2str($v, false); } function decrypt($str, $key) { if ($str == "") { return ""; } $v = $this->str2long($str, false); $k = $this->str2long($key, false); if (count($k) < 4) { for ($i = count($k); $i < 4; $i++) { $k[$i] = 0; } } $n = count($v) - 1; $z = $v[$n]; $y = $v[0]; $delta = 0x9E3779B9; $q = floor(6 + 52 / ($n + 1)); $sum = $this->int32($q * $delta); while ($sum != 0) { $e = $sum >> 2 & 3; for ($p = $n; $p > 0; $p--) { $z = $v[$p - 1]; $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); $y = $v[$p] = $this->int32($v[$p] - $mx); } $z = $v[$n]; $mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z)); $y = $v[0] = $this->int32($v[0] - $mx); $sum = $this->int32($sum - $delta); } return $this->long2str($v, true); }}?>